In-network, Push-based Network Resource Monitoring

Scalable, Responsive Network Management

Taylor Groves and Dorian Arnold
University of New Mexico

[tgroves,darnold]@cs.unm.edu

ABSTRACT

We present preliminary work from our experiences with dis-
tributed, push-based monitoring of networks at Yahoo!. Net-
work switches have grown beyond mere ASICs into machines
which support unmodified Linux kernels and familiar user
interfaces. These advances have enabled a paradigm shift
in network monitoring. In lieu of traditional approaches
where network diagnostics were delivered via SNMP we uti-
lize Sysdb of Arista’s EOS to implement a push based ap-
proach to network monitoring. This leaves the individual
switches in charge of determining what monitoring data to
send and when to send it. With this approach — on-switch
collection, dissemination, and analysis of interfaces and pro-
tocols become possible. This push based approach reduces
the feedback loop of network diagnostics and enables network-
aware applications, middleware and resource managers to
have access to the freshest available data.

Our work utilizes the OpenTSDB monitoring framework
to provide a scalable back-end for accessing and storing
real-time statistics delivered by on-switch collection agents.
OpenTSDB is built on top of Hadoop/HBase, which han-
dles the underlying access and storage for the monitoring
system. We wrote two collection agents as prototypes to ex-
plore the framework and demonstrate the benefits of push
based network monitoring.

Categories and Subject Descriptors

C.2.3 [Computer Systems Organization|: Network Op-
erations— Network monitoring

General Terms

Resource monitoring, Network management

Keywords
Push-based monitoring, On-switch monitoring

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

NDM’13, November 17-21 2013, Denver, CO, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-2522-6/13/11 ...$15.00.
http://dx.doi.org/10.1145/2534695.2534704 .

Yihua He

. Yahoo Inc.
hyihua@yahoo-inc.com

1. INTRODUCTION

Traditionally, computer and computational science fields
have been dominated by computation-intensive problems. In
recent years, we have seen a dramatic rise in data-intensive
problems, involving the transmission and analysis of mas-
sive volumes of data from large networks of sensors or other
acquisition devices, simulations or social networks. In addi-
tion to new generations of algorithms and data management
technologies, the efficient extraction, filtration, mining and
knowledge discovery from these data require scalable ap-
proaches for network traffic engineering and quality of ser-
vice (QoS).

Effective traffic engineering and QoS services rely on capa-
bilities that enable localized as well as more holistic profiles
of network interactions and performance. This means that
the network (both its endpoints and intermediate points)
must be instrumented with monitoring capabilities. Cur-
rent network monitoring typically employs the Simple Net-
work Management Protocol (SNMP). A major shortcoming
of SNMP is that it is not scalable for retrieving large col-
lections of data. Wu and Marshall show that SNMP does
not provide sufficient mechanisms to achieve payload effi-
ciency when sending a stream of data from even small rout-
ing tables [11]. This inefficiency is due largely to extraneous
protocol data and SNMP’s pull-based approach.

To continue to be feasible and effective, network monitor-
ing techniques must evolve to become more responsive and
less intrusive. We propose a new distributed, push-based ap-
proach to network resource monitoring that promises to be
more scalable, efficient and responsive than the traditional
SNMP-based approach. Network switches have grown be-
yond mere ASICs into full machines that run unmodified
Linux kernels with more standard interfaces and capabilities.
We leverage these capabilities for on-switch or in-network in-
formation collection, dissemination, filtration, aggregation
and analysis. Our push-based approach reduces the feed-
back loop of network diagnostics and enables network-aware
applications, middle-ware and resource managers to have
access to the freshest available data.

In this paper, we detail our motivations, approach and
preliminary experiences with this new approach. Our pro-
totype framework utilizes the OpenTSDB framework [6]; in
this environment, we implemented two basic data collection
agents to demonstrate the benefits of in-network, push-based
network monitoring. Our preliminary results demonstrate
performance benefits and show the feasibility of extending
on-switch monitoring to production systems.

The organization of the rest of this is as follows: in the

next section, we detail traditional network monitoring ap-
proaches and describe their limitations and shortcomings.
Then, in Section 2, we describe our motivation for moving
away from traditional SNMP approaches and towards on-
switch push-based monitoring. In Section 3 we describe our
initial experiments and results with this prototype. Finally,
in Section 4, we describe the implications of our current
results and our future research plans to continue the explo-
ration of this new network monitoring paradigm.

2. MOTIVATION

Traditionally, SNMP has been used for collecting infor-
mation about network devices and protocols. SNMP data
collection can be divided into two approaches: a pull-based
approach, where managers query SNMP agents for system
information and a push-based approach, where SNMP traps
are triggered, leading to an asynchronous communication
from the agent to manager. Both of these methods rely on
an universally defined data structure called the Management
Information Base (MIB). While the MIB guarantees a uni-
versal view of network devices and protocols, its usage often
leads to unnecessary overhead.

SNMP traps are a feature of the protocol meant to com-
municate asynchronously from the SNMP agent to manager.
Traps are classified into 6 generic types: coldStart, warm-
Start, linkDown, linkUp, authenticationFailure, egpNeigh-
borLoss, and enterpriseSpecific. Usage of SNMP traps have
traditionally been focused on providing coarse grained in-
formation about device status. Though custom traps can
be developed within the enterpriseSpecific domain, SNMP
trap still suffer much of the same structural overhead since
both managers and agents must parse the MIB on message
transmissions and receipts.

One of the major operational issues with SNMP in a large
corporation, for example Yahoo, is that polling SNMP on
network devices could result in very high CPU utilization
for the device. This high CPU utilization may delay or
even halt important information processing, such as route
re-calculation. By using a push model, we do not have to
restrict ourselves to SNMP polling once every x minutes.
Instead, we can have the device report data with the pace
at which that data changes and such that it does not im-
pede other more important jobs, that is, smoothing the CPU
spikes.

One other issue with SNMP is that certain components
of the protocol are not very efficient. For example, a router
normally stores its route table in a hashed format in order
to conduct fast subnet-to-route lookups. However, SNMP
responses for the route are required to be returned in lexi-
cographical order per RFC 1213. Therefore, for each SNMP
request the router receives, the hash table must be sorted
lexicographically before a SNMP response (protocol data
unit) can be built [1]. The larger the route table, the more
CPU intensive the sort. On the other hand, by using a push
model, we are more flexible and do not have to make the
expensive and unnecessary sort before reporting the route
data.

Real world usage of SNMP typically suffers from an ad-
ditional deficiency in terms of reliability and robustness to
failure of management nodes. All system information is de-
livered from the SNMP agents to the SNMP manager. If a
manager node fails, the agents cease to report the informa-
tion needed for monitoring. Though distributed approaches

to management have been explored [16], in practice SNMP
connections are formed by agents reporting to a single man-
agement node [15].

One alternative to SNMP collection is to perform push-
based monitoring from the switch into existing, scalable
monitoring solutions. Modern switches have become more
powerful, hosting multi-core CPUs, in addition to several
gigabytes of memory and optional solid sate storage. These
switches can now be leveraged to enable intelligent reporting
of metrics without the burden of traditional pull based solu-
tion and SNMP overhead. We believe that by utilizing on-
switch monitoring network-aware applications, middle-ware
and data managers will have access to the freshest available
data. This is possible due to lower overheads in processing,
a shorter feedback loop and intelligent collection.

2.1 Next generation network clusters

In the era of cloud computing, there has been an sig-
nificant demand in inter-node communication bandwidth
within a data center. Many applications in large Internet
companies consist of thousands of distributed nodes. Effi-
cient communication among these nodes is critical to the
performance of these bandwidth-bound applications. For
example, Yahoo has been running one of the largest Hadoop
clusters [2] consisting of more than 10,000 nodes. Each
of these nodes must perform significant data shuffling with
other nodes in the same cluster to transport the output of
the map phase before the reduce phase can be performed.

Unfortunately, communication bandwidth in large clus-
ters may become oversubscribed by a significant factor in
traditional network architectures. To help mitigate such is-
sues, a breed of next generation networks [8, 14, 10, 12, 13]
have emerged in recent years. The newly proposed networks
leverage a large number of commodity Ethernet switches and
provide a very low over-subscription rate for all connected
hosts.

However, these new designs still pose significant challenges,
particularly for network monitoring, managing and trou-
bleshooting. The number of switches and the number of
links among them are significantly larger than in their coun-
terpart traditional networks. If any component of a cluster
fails, the configurations on the rest of the devices may need
adjustments in order to minimize the failure’s impact and
re-balance the traffic. This needs to be done in a short
time frame, ideally, by an automated system. To meet these
challenges, we need a scalable, fast and efficient monitoring
system.

3. PROTOTYPE FRAMEWORK
3.1 The OpenTSDB monitoring framework

We chose to utilize the Open Time Series Database (OpenTSDB)

as a scalable monitoring back-end [6]. OpenTSDB is a sys-
tem built to store, serve and index system metrics on top of
HBase [5] and is designed to handle billions of metrics per
day. We selected OpenTSDB as our monitoring solution for
several reasons. First, it is free and open source. Secondly,
by utilizing a distributed data store such as HBase, it is
capable of higher throughput than some traditional moni-
toring systems. Lastly was it’s usage of tags to easily or-
ganize metrics. OpenTSDB can be organized by it’s three
key components — Time Series Daemons (TSD’s), on device
collectors, and a distributed data store as seen in Figure 1.

Time Series Daemon(s)

User/Analysis

Network Device
(Running Collection Agent)

Figure 1: A diagram representing our usage of the
OpenTSDB monitoring framework.

TSD’s are responsible for receiving metrics from device
collectors and pushing those metrics into the distributed
data store. The daemons also query the data store on behalf
of the user and present the data via a web or command-line
interface. In the event that a set of TSD’s cannot adequately
service a set of collectors the number of daemons can be in-
creased to provide further scalability of data collection.

The collectors are scripts running on the device being
monitored (in our case, virtual switches as we describe later).
Collectors are responsible for retrieving and reporting time
series to the T'SD’s, where a time series is a combination of
four elements: a metric name, Unix time-stamp, a floating
point or 64-bit integer value and a set of tags. The tags
provide a mechanism for filtering and classifying the data in
a meaningful way. For example, a metric for inOctets might
additionally have the tags hostname and interface. With
these tags the T'SD’s could present the time series as either
sums of input traffic across all hosts and interfaces or a spe-
cific interface on a single host. OpenTSDB’s related tcollec-
tor package [7] provides added functionality to all the user
written collectors, such as on-device deduplication, where
devices delay reporting metrics that haven’t changed since
their last posted update. Preprocessing like this benefits
the monitoring system by saving bandwidth and extraneous
computation by the management system. In future work we
wish to explore other types of preprocessing, as we believe
on-switch preprocessing may be a useful avenue for finding
savings in network bandwidth and data management.

Lastly, the distributed data store, HBase, is what pro-
vides the underlying scalability of the system. By utiliz-
ing Hadoop and HDFS [3, 4], HBase supports querying and
writing tables with billions of rows and millions of columns.

For the purposes of our prototype cluster all of the col-
lectors, virtual switches, TSD’s and distributed data store
were hosted on a single physical machine. It should be made
clear that this will not be the case when the system is put
to real use.

3.2 Interface and routing collectors

We implemented two prototype collectors for our initial
testing on our virtual cluster, eos_interface and eos_routing,
which record interface and BGP metrics, respectively. Both
collectors were written to take advantage of Arista’s EOS
operating system. The eos_interface script collects interface
statistics and counters by utilizing the information stored

Name Tags

intf.outBroadcastPkts host, interface
intf.out UcastPkts host, interface
intf.inMulticast Pkts host, interface

intf.outErrors

host, interface

intf.inBroadcastPkts

host, interface

intf.outOctets host, interface
intf.outDiscards host, interface
intf.inOctets host, interface
intf.inUcastPkts host, interface

intf.inErrors

host, interface

intf.inDiscards

host, interface

intf.outMulticast Pkts host, interface
intf.inBitsRate host, interface
intf.outBitsRate host, interface
intf.outPktsRate host, interface
intf.statsUpdateTime host, interface
intf.inPktsRate host, interface
bgp.msgrecv host, local AS, neighbor, neighbor AS
bgp.msgsent host, local AS, neighbor, neighbor AS

bgp.up_down host, local AS, neighbor, neighbor AS
bgp.state host, local AS, neighbor, neighbor AS
bgp.pfxred host, local AS, neighbor, neighbor AS
bgp.summary.num nodes | host, local AS, neighbor, neighbor AS

bgp.summary.num routes

host, local AS,

neighbor,

neighbor AS

Table 1: Table showing the different metrics col-
lected by the interface and routing collectors. The
tags represent different methods of filtering data
with respect to each metric.

in Arista’s Sysdb. At the time, the BGP routing statis-
tics were not available via Sysdb, so we pulled them using
the show commands from the command line interface (CLI).
We deployed each collector as extensions onto the Arista
switches by packaging each script in the required SWIX for-
mat and copying them into the switch’s flash storage. Once
a script is running as an EOS extension, there are mech-
anisms to daemonize or immortalize the extension so it is
restarted in the event of failure. To ensure that the exten-
sions persist between switch restarts they are added to the
boot-extensions file. Our interface collectors ran every 15
seconds on each switch, while the routing collector ran ev-
ery 60 seconds. Each metric uses the OpenTSDB tag system
to provide custom filtering. This facilitates flexible examina-
tion of the system metrics, providing both macro and micro
views of the system metrics. A complete list of the statistics
and counters collected with their tags can be seen in Table
1.

3.3 Virtualized environment

In order to experiment with our monitoring solution, we
built a virtualized cluster comprised of virtual switches and
connected them with Ethernet bridges. Arista provides a
slightly modified switch operating system (VEOS) image to
their customers. This vEOS image can be run on a num-
ber of common hypervisors such as QEMU-KVM, VMware
Player, VirtualBox and etc. To create a cluster, we use
libvirt to instantiate 24 such virtual switches with Arista’s
vEOS image. As depicted in Figure 2, these switches are di-
vided into two virtual chassis (VCs) and a group of 8 Top of
Rack switches (TORs). Each VC counsists of 4 spine switches
and 4 leaf switches. Each of these switches has 16 in-band
data ports and 1 management port. In order to connect
these virtual switches, Ethernet bridges are created within

Figure 2: A visual representation of the 24 switches that make up the virtual cluster, divided into leaf, spine

and top of the rack (TOR) nodes.

the host machine between any two ports where we would
run a cable in real world.

Once the virtual switches and Ethernet bridges are instan-
tiated, we can configure the virtual cluster and run routing
protocols the same way as if we configure clusters with real
switches. In this particular virtual cluster, we assign IP ad-
dresses on each of the interfaces on the virtual switches and
run stock BGP protocol among them.

The virtualized environment provides a useful testbed to
prototype on-device collection without provisioning the ac-
tual hardware. To set this up on dedicated hardware, we
would require 24 switches and hundreds of network cables.
With this virtualized cluster we can conveniently adjust the
link quality or emulate real world problems. Some of this
emulation would be more difficult on physical switches where
traffic is passed through the ASIC directly.

3.4 Prototype results

Even though the CPU performance of virtualized switches
does not necessarily reflect the expected performance of phys-
ical switches, we can inform the reader that for our clus-
ter the CPU utilization peaked to approximately 15% on
the virtual switches and these peaks lasted for under a sec-
ond as collectors gathered necessary metrics. On dedicated
switches we expect the performance to be better, since our
16 core machine was hosting 24 virtual switches, the TSD
and the distributed data store. The performance overhead
on dedicated machines will be explored in detail in future
work.

From the front-end web interface, we saw responses at a
varying resolution of a milliseconds upwards to around two
seconds. This was highly dependent on the amount of data
points queried. This response should be greatly improved

when the data store becomes distributed across multiple
physical nodes. On a real system, the latency will change
as RPC will be made to separate nodes, rather than host-
ing all nodes on the same physical machine. Furthermore,
the TSD and collectors would have independent computa-
tional resources. In our virtual cluster, the HBase nodes
were hosted on the same physical node as the TSD’s and
collectors. In a real system this will be distributed to pro-
vide better performance. Despite the over subscription of
virtual machines to cores we were able to retrieve metrics
at a scale and frequency not practical with current SNMP
based systems. Extensive comparisons of scalability and fre-
quency will be explored in future work.

To evaluate our prototype network, we performed a se-
ries of tests where traffic flow was generated through the
network via an iperf server and client. During this time ap-
proximately 2000 metrics were collected every 15 seconds,
corresponding to the combination of metrics and interfaces
on each switch. We saw no trouble in keeping up with this
rate, despite the over subscription of virtual machines to
cores. Using the OpenTSDB monitoring solution in combi-
nation with on-switch collectors we were able to see a myr-
iad of behaviors. In Figure 3 we were able to see the shift in
flow as traffic pivoted from spnl-2-vma to spn3-2-vma. We
present this change in flow in Figures 4 and 5. We believe
this was likely due to the fact that the virtual switches lack
the hardware to consistently map communication flows that
an ASIC would normally provide. In additional testing we
used traffic controller (tc) combined with netem to emulate
packet loss on specified interfaces throughout the network.
We were able to observe how this leads to a breakdown of
the BGP topology, leading to an eventual loss of applica-
tion traffic and we were able to observe this in real-time. If

Figure 3: This chart represents an observed data flow from TORI1-1 to TORS8-8. This chart captures the
transition from using the intermediate switch SPN1-2 to SPN3-2. The y-axis is the inOctets rate per 15

seconds.
ooo o GpN oo Qa
| LEF2-2
E R e 8 o a

ToR
8-8

Figure 4: This graphic demonstrates the original
flow observed from TOR1-1 to TORS-8.

we had been using traditional SNMP approaches to monitor
the network, our view of network health would only be up-
dated every 5 minutes. With an SNMP based approach, it is
possible that we might have missed this event entirely. We
believe that having this rapid access to network data can fa-
cilitate better network QOS in addition to providing better
support to network-aware applications. In future work we
want determine what kind of analysis a on-switch monitor-
ing solution is capable of and explore what kind of failures
this system can detect that previous solutions couldn’t.

4. CONCLUSIONS AND FUTURE WORK

As large systems continue to grow, network-aware appli-

Figure 5: This graphic demonstrates the adjusted
flow from TOR1-1 to TORS-8.

cations middle-ware and data management will be crucial
to efficient system usage. We believe that current strate-
gies for network monitoring fall short in terms of scalability
and performance. Furthermore, future network monitoring
solutions will need to meet several criteria:

e They will need to provide on-device collection in or-
der to achieve better performance over the network,
devices and monitoring managers.

e Monitoring solutions will need to sit on top of a scal-
able, distributed data store to support an era of large
systems and big data.

e Devices should to support in situ analysis of the data

to further distribute the workload and save resources.

With this context, our work demonstrates the potential
of on-switch, push-based resource monitoring, which will be
essential for future network-aware solutions. It is our be-
lief that when a monitoring solution meets the above cri-
teria it will provide numerous benefits to the user and the
application: distributed intelligence, faster feedback loops,
smoothing of performance spikes, decreased network usage
and ease of use by leveraging existing large scale solutions
(HBase, HDF'S, Hadoop in our case). As a result, our solu-
tion is more scalable and accurate with less overhead on the
device, while being easier to manage.

Lastly, this is a area rich with future work. Things we
would like to explore in the future include, evaluations of
network-aware applications and middle-ware. We want to
explore in situ preprocessing, so that the switch reduces ex-
traneous reporting of data. We need to evaluate the per-
formance of monitoring overhead on physical switches and
explore how we can smooth the performance spikes associ-
ated with collection. With this monitoring system in place,
we can explore the real-time analysis of network QOS — ex-
amining the causes of congestion, downed links and other
failures. All of this future work depends on scalable real-
time monitoring.

S. REFERENCES

[1] Ip simple network management protocol (snmp)
causes high cpu utilization,

[12] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,

C. Tian, Y. Zhang, and S. Lu. Bcube: a high
performance, server-centric network architecture for
modular data centers. SIGCOMM Comput. Commun.
Rev., 39(4):63-74, Aug. 2009.

[13] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
Dcell: a scalable and fault-tolerant network structure
for data centers. In Proceedings of the ACM
SIGCOMM 2008 conference on Data communication,
SIGCOMM 08, pages 75-86, New York, NY, USA,
2008. ACM.

[14] R. Niranjan Mysore, A. Pamboris, N. Farrington,

N. Huang, P. Miri, S. Radhakrishnan, V. Subramanya,
and A. Vahdat. Portland: a scalable fault-tolerant
layer 2 data center network fabric. SIGCOMM
Comput. Commun. Rev., 39(4):39-50, Aug. 2009.

[15] J. Schonwalder, A. Pras, M. Harvan, J. Schippers, and
R. van de Meent. Snmp traffic analysis: Approaches,
tools, and first results. In Integrated Network
Management, 2007. IM °07. 10th IFIP/IEEE
International Symposium on, pages 323-332, 2007.

[16] R. Subramanyan, J. Miguel-Alonso, and J. A. B.
Fortes. A scalable snmp-based distibuted monitoring
system for heterogeneous network computing. In
Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), Supercomputing ’00,
Washington, DC, USA, 2000. IEEE Computer Society.

"http://www.cisco.com/image/gif /paws/7270/ipsnmphighcpu.pdf”.

[2] Yahoo! launches worldas largest hadoop production
application,

"http://developer.yahoo.com/blogs/hadoop/posts/2008/02/yahoo-

worlds-largest-production-hadoop/”.
[3] Hadoop. http://hadoop.apache.org, 2013.
[4] Hadoop file system.

http://hadoop.apache.org/docs/stable/hdfs_design.html,

2013.

[5] Hbase. http://hbase.apache.org/, 2013.

[6] Open time series database (opentsdb).
http://opentsdb.net, 2013.

[7] Tcollector. http://opentsdb.net/tcollector.html, 2013.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In
Proceedings of the ACM SIGCOMM 2008 conference
on Data communication, SIGCOMM ’08, pages 63—74,
New York, NY, USA, 2008. ACM.

[9] L. Andrey, O. Festor, A. Lahmadi, A. Pras, and
J. SchA{inwAdlder. Survey of snmp performance
analysis studies. International Journal of Network
Management, 19(6):527-548, 2009.

[10] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VI2: a scalable and flexible data center
network. In Proceedings of the ACM SIGCOMM 2009
conference on Data communication, SIGCOMM 09,
pages 51-62, New York, NY, USA, 2009. ACM.

[11] Q. Gu and A. Marshall. Network management
performance analysis and scalability tests: Snmp vs.
corba. In Network Operations and Management
Symposium, 2004. NOMS 2004. IEEE/IFIP,
volume 1, pages 701-714 Vol.1, 2004.

